
c

LA-UR- 05 - L72 3
Approved forpublic release;
dist~bution is unlimited.

Title.

Author@).

Submitted to.

TRex: Interactive Texture Based Volume Rendering for
Extremely Large Datasets

Joe Kniss, The University of Utah
Patrick McCormick, LANL, CCS-I
Allen McPherson, LANL, CCS-I
James Ahrens, LANL, CCS-1
Jamie Painter, TurboLabs
Alan Keahey, LANL, CCS-1
Charles Hansen, The University of Utah

IEEE Computer Graphics and Applications Special Issue on
Large Data Visualization (Aug/Sept. 2001 issue)

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Universityof California forthe US.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to ailow others to do so, for US.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (8/00)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

TRex: Interactive Texture Based Volume Rendering
for Extremely Large Datasets

Joe Knisst Patrick McCormick$ Allen McPhersonS James Ahrens$ Jamie Painter$ Alan Keahey$
Charles Hansent

tscientific Computing and Imaging Institute
School of Computing, University of Utah

$Advanced Computing Laboratory
Los Alamos National Laboratory

Abstract
Many of today’s scientific simulations are capable of producing ter-
abytes to petabytes of data. Visualization plays a critical role in
understanding and analyzing the results of these simulations. Hard-
ware accelerated direct volume rendering has proven to be an excel-
lent visualization modality for both scientific and medical data sets.
Current graphics hardware implementations limit the size of inter-
active datasets to sizes that are orders of magnitude smaller than
these datasets.

We present a scalable system which takes advantage of parallel
graphics hardware, software based compositing, and high perfor-
mance I/O. The goals of our application are to provide near inter-
active display rates for terabyte sized, time-varying, datasets and
allow moderately sized datasets to be visualized in virtual environ-
ments. We also present a novel set of direct manipulation widgets
for interacting with, and querying, the visualization.

I Introduction
Visualization is an integral part of scientific computation and simu-
lation. State of the art simulations of physical systems can generate
terabytes to petabytes of data where a single time step can contain
more than a gigabyte of data per variable. Sizes of some datasets are
projected to increase at a rate close to Moore’s law. The key to un-
derstanding this data, is the ability to visualize the global and local
relationships of data elements. Direct volume rendering has proven
to be an excellent method for examining these properties. It allows
each data element to contribute to the final image and provides the
ability to query not only the spatial relationship of data elements,
but their quantitative relationships as well. Hardware accelerated
volume rendering is an approach that allows users to achieve in-
teractive display rates for reasonably sized datasets. The size of
interactive datasets is a function of the hardware’s available texture
memory and fill rate. Current high end hardware implementations
place an upper bound on dataset sizes of around 256MB. In this pa-
per, we present a scalable, pipelined approach for rendering datasets
which are larger than the limitations of a single graphics card. We
do this by taking advantage of multiple hardware rendering units
and parallel software compositing.

The goals of TRex, our system for interactive volume render-
ing of large datasets, are to provide near interactive display rates
for terabyte sized, time-varying, datasets and provide a low latency
platform for volume visualization in immersive environments. We
consider 5 frames per second (f p s) to be near interactive rates for
normal viewing environments, and immersive environments to have
a lower bound frame rate of 10 f p s . While this is significantly below
most virtual environment update rates, we have found that the user
can successfully investigate extremely large datasets at this rate.

Using TRex for virtual reality environments requires very low la-
tency, around 50ms per frame, or lOOms per view update or stereo
pair. To achieve lower latency renderings, we either render smaller
portions of the volume on more graphics pipes or subsample the
volume so that a graphics pipe renders fewer samples per frame.
We present previous volume rendering work in the next section. We
then provide an overview of our TRex renderer. This is followed by
a brief discussion on multipipe compositing issues. We then de-
scribe the enhancements we provided for immersive environments.
We close with our current efforts in extending this system.

2 Previous Work
Current volume rendering methods can be grouped into three ma-
jor categories. The first are those that lend themselves to parallel
software implementations. These include ray casting, shear warp,
and splatting. Ray casting [6] is essentially a special case of the ray
tracing method. Rays are cast from an eye point through the view
plane and intersected with volume elements. Samples taken along
the ray are typically trilinearly interpolated and composited in a
front to back order. Shear warp [4] takes advantage of precomputed
coordinate axis aligned slices through the volume and replaces the
more expensive trilinear interpolation with bilinear in these slice
planes. This method generates arbitrary view points by orthograph-
ically compositing the sheared slices along a major axis. This inter-
mediate view produces a sheared version of the volume which then
undergoes a 2D warping transformation in image space to generate
the final image. Shear warp is considered one of the fastest soft-
ware volume rendering methods, but can suffer from artifacts. It
also requires three copies of the volume to remain in memory, one
copy for each major axis. Splatting [9] is projection based method
where each voxel is generalized into a contribution extent, typically
achieved by convolving the voxel with a gaussian, which essentially
eliminates the need for interpolation since the samples are the vox-
els themselves. This method also typically composites the splats in
a front to back order.

The second grouping includes methods which are implemented
on single graphics adapters. While at some level the hardware may
take advantage of parallelism, the volume rendering is performed
on a single graphics unit. Using texture mapping hardware, one
can take two dimensional, axis aligned slices which take advan-
tage of bilinear texture mapping hardware [I] . These slices are
alpha-blended to form the final image. Two-dimensional texture
methods also suffer from the same sampling artifacts as the soft-
ware shear warp implementation and require three copies of the
data sliced along the major axes. Three dimensional texture based
methods [IO] take advantage of trilinear interpolation in hardware.
The voxels are mapped onto polygons aligned with the view di-
rections using trilinear interpolation based upon three dimensional

P<c.P‘ocEas StQC 1: slag0 1 stup3: Stagc 4:
Bricked Dala Readers Rcalcrcra Comuositors ULiDisplay

Figure 1: Time-Varying Raleigh Taylor Fluid Instability, RAGE
dataset (10243).

texture mapping hardware. Lamar introduced a method of poly-
gon slice construction based on concentric shells [5] which better
approximates the ray casting method above. The VolumePro vol-
ume rendering board provides a hardware implementation of the
ray casting method and can achieve high frame rates for 512’ vol-
umes [7].

The third grouping includes methods which utilize hardware
graphics units in parallel. Previous work in this area includes the
Minnesota batch mode parallel hardware volume renderer, imple-
mentation by Paul Woodward [l 11. This volume renderer was im-
plemented for use on an Origin 2000. It was not designed to pro-
vide interactive visualization, rather users create key frames which
the application uses to produce animations. Volumizer, a propri-
etary API from SGI for hardware volume rendering, also supports
parallel volume rendering. The frame latency of this API, how-
ever, increases linearly as more graphics pipes are added. Both
implementations composite in hardware. This requires each par-
tial image to be downloaded and composited in the user interface’s
frame buffer. Downloading multiple images to graphics hardware
can take considerable time, thus limiting the interactivity of these
implementations. Furthermore, parallel rendering using Volumizer
pipelines the compositing sequentially along the different graphics
pipes. This leads to limited scaling with an n fiame latency where
n is the number of graphics pipes.

3 TRex System Overview
The implementation presented in this paper is a hybrid parallel soft-
ware and hardware volume renderer. It was designed to meet tar-
get performance for near interactive display for large scale time-
varying scientific datasets. Specifically, the system was designed to
render full resolution, 1024’, time-varying data, such as the RAGE
dataset in Figure 1, at nearly 5 fps on an 4-pipe Onyx-2 with IR-3
graphics hardware. The limiting factor is the high performance I/O
as described in section 3.2.1. Rendering is not the bottleneck as
demonstrated by achieving over 5 fps on an 4-pipe Onyx-2 with a
static 10243 volume. For immersive environments, we achieve 10
f p s using stereo pairs, albeit with reduced resolution as described
in section 5. The primary difference from previous parallel hard-
ware volume rendering work is the volume renderer’s interactivity
on extremely large datasets. This is achieved by a design that uti-

image

Figure 2: The TRex Pipeline

lizes all available hardware components: streaming time-varying
datasets from a carefully designed, very high-performance 110 sys-
tem, rendering with graphics pipes and compositing the results with
processors. We have found that interactively visualizing datasets is
a critical first step in the analysis process, allowing users to rapidly
gain a detailed understanding of their results. Since the hardware
components can work independently, the parallel volume rendering
process can be pipelined as shown in Figure 2. With overlapped
stages, this pipeline allows us to achieve an overall performance
which closely matches the performance of an individual graphics
pipe. We review the details of the TRex pipeline in the following
sections.

3.1 Pre-processing
Our implementation requires an off-line preprocessing step in
which the data is quantized from its native data type, commonly
floating point, to either 8 bit or 12 bit unsigned integer data. The
data is then split into subvolumes with sizes matching the avail-
able texture memory on each graphics pipe. Note that most graph-
ics hardware implementations currently require texture dimensions
to be a power of two. The original volume may need to be super
sampled or padded to match this power of two requirement. It is
advisable to perform these operations on the original floating point
data prior to bricking to avoid quantization errors and artifacts at
subvolume interfaces. Interface artifacts are caused by boundary
conditions in super sampling schemes.

3.2 The TRex Pipeline
TRex’s rendering pipeline has four stages. Each stage is a multi-
threaded process capable of executing simultaneously with the
other stages. A stage consists of two main parts: an event man-
ager which handles communication, and a functional part which
implements the task@) of the thread. For a volume partitioned into
N subvolumes, TRex will create N readers and N renderers. Note
that it is not necessary for the number of compositing threads to
equal the number of subvolumes. The ideal number of compositor
threads is a function of both image size and the number of images
to be composited. A user interface thread is responsible for display-
ing the final composited image and sending user event messages to
the other stages and the threads for supporting Immersive TRex and
direct manipulation widgets. We discuss each of the pipeline stages
in the following sections.

3.2.1 Stage 1: Subvolume Reader

The first stage of the pipeline involves reading a time step from disk.
TRex creates a separate reader thread for each of the subvolumes
in a time step. Provided the data resides on a well striped RAID
and direct I/O is available, the subvolumes can be read from disk

in parallel at approximately 140MB/sec. ’ Unfortunately this data
rate is not fast enough to sustain our desired throughput of 5 fps for
1024’ time-varying datasets but does provide a parallel approach
to I/O that will work on most Silicon Graphics systems. For large
time-varying datasets, a higher performance I/O design is required,

A method to achieve such high performance I/O is to build a file
system that is customized for streaming volume data directly into
system memory and then into texture memory. On the SGI Origin
2000 it is possible to do this by first co-locating the IIO controllers
and graphics pipes, such that they share a common physical mem-
ory within the NUMA architecture. This configuration avoids the
overhead associated with routing data through the system’s inter-
connection network, thus minimizing data transfer latency. In order
to maximize performance, our goal for I/O is to match the approxi-
mate BOOMB/sec texture download rate of the InfiniteReality pipes,
For 16 pipes operating in parallel this is equivalent to a sustained
rate of approximately 5GBhec. These rates require the use of a
striped file system built using 64 dual fiber channel controllers and
2,304 individual disks. This is achieved by placing 4 fiber channel
controllers per pipe, with each fiber channel controller capable of
7OMBlsec. This gives us a rate of 4 x 7OMB/sec= 280MB/sec for
each pipe. Assuming we achieve the best case performance, we are
limited by this 280MBhec rate of the I/O system. In addition we
have also discovered that it is necessary to store subvolumes in con-
tiguous blocks on disk to achieve these data rates. This can be done
by using SGI’s real time filesystem (RTFS). Our initial benchmarks
have placed this configuration capable of approximately 4GBlsec.
We are continuing our efforts to reach the desired 5GB/sec rate.

3.2.2 Stage 2: Render
The second stage of the pipeline renders subvolumes in parallel.
Each graphics pipe i s managed by a separate rendering thread.
These threads are initially responsible for creating OpenGL ren-
dering windows. A renderer initializes multiple image buffers for
simultaneous rendering with the other stages since the compositing
stage and UI stage both rely on the image buffers as well. Raw data
buffers, for the Reader Stage, are created by the rendering threads
so that the memory will reside near the graphics units it will be ren-
dered on; provided that the rendering thread has been placed on a
processor near the unit. The number of raw data buffers is depen-
dent on the amount of time step buffering desired plus one for the
simultaneous reading of data and downloading to texture memory.

Renderers receive a render message from the user interface. This
message includes information about the current frame’s rotation,
translation, scale, and sample rate. The OpenGL model-view ma-
trix is set for the frame then geometry and volume data are ren-
dered. Each renderer supports a simplistic scene graph which or-
ders geometric primitives and subvolumes (if a pipe renders more
than one). Our volume rendering approach uses 3D textures with ei-
ther view aligned slicing [101 or an approximation to Lamar’s con-
centric shells method [5]. The final image’s color and alpha values
are read from the frame buffer and stored in a buffer. Finally, the
renderer sends a message to the compositors that a new image is
available, along with a pointer to the image buffer, and the subvol-
ume’s distance from the eye point.

A texture lookup table encodes the transfer function. It assigns
color and alpha values to the scalar texture elements. The user
makes changes to the transfer function by manipulating control
points in color and alpha space as illustrated in Figure 3. We have
extended the transfer function control to allow the user to select a
boundary distance function based on Kindlmann’s semi-automatic
transfer function generation [3]. The user can then select the ap-
propriate portions of this automatic transfer function by manipulat-

‘Direct I10 avoids kernel interrupt overhead and is a feature available on
SO1 systems.

Alpha
Color
(Red) ..

0 - 255

8 bit DxValues

Figure 3: Texture Lookup Table. Note: the Alpha Band (top) has
been multiplied by the Color Band (bottom) to show the resulting
alpha weighted colors.

Sinned distance to boundw center in voxels

0 255
v

8 bit Data Values

Figure 4: Texture Lookup Table with the Semi-Automatic genera-
tion of alpha mappings. The top band allows the user to select data
values based on their distance from an ideal boundary detected in
the volume. The middle band shows the generated alpha mapping
multiplied by the color band.

ing control points in the alpha band (see Figure 4). If the transfer
function or sample rate has changed since the last frame, the trans-
fer function is updated and redownloaded to the graphics hardware
prior to rendering a subvolume.

3.2.3 Stage 3: Compositor
Compositing begins once a completion message is received from
each of the N renderers. The message includes a pointer to the
renderer’s shared memory image buffer and the subvolume’s dis-
tance from the eye point. A compositing thread is responsible for
compositing N images across a horizontal stripe of the final image.
Composite order is determined by comparing the locations of the
subvolumes and compositing back to front. As shown in Figure 5
when image A is composited over image B, the resulting image re-
sides in A’s buffer. This eliminates the need for additional memory
in the compositing stage. The first composite thread waits for the
other compositors to finish before sending a message to the UI that
a new image is ready for display.

The decision to use software compositing over hardware com-
positing was made because the task is embarrassingIy parallel and

D

Compositor Composited image
threads in image buffer D

Tinage buffers
from Renderers

Figure 5 : Stage 3, compositing, detail. In this example 4 image
buffers from stage 2 are composited as D over C over B over A.
Image buffer D would then be downloaded to the UI’s frame buffer
in Stage 4.

the cost of downloading N images to the graphics hardware is pro-
hibitively time consuming. Also, the graphics hardware is the criti-
cal resource in this system. By utilizing available CPUs to compos-
ite the partial results, we can achieve better scaling than a graph-
ics hardware approach. Employing the available CPUs also allows
us to overlap compositing with the rendering of the next frame re-
sulting in only a one frame latency rather than the multiple frame
latency imposed by the Volumizer and Minnesota hardware based
compositing systems.

3.2.4 Stage 4: User Interface
The user interface thread is responsible for managing the input
from the user and sending messages that trigger other stages of the
pipeline. If the user changes a viewing parameter such as rotation,
scale, translation, or the transfer function, the UI sends a request
to the renderers along with the new view parameters for the frame.
When a message is received indicating that a new frame is avail-
able, the UI downloads the raw image data from the shared memory
image buffer directly to the display’s frame buffer.

In addition, the user has access to a quality parameter that ad-
justs the number of samples through the volume. This parameter is
also set automatically. When the user is in an interaction state such
as a pending rotation or translation, the sample rate is set lower to
increase the frames per second. Once the interaction state is com-
pleted, i s . the user releases the mouse click, the quality parameter
is set higher and the volume is rendered at a higher sample rate al-
lowing automatic progressive refinement. When the window size
is changed, the UI will send a resize request to the renderers. The
slave display’s window size will be changed as well as the image
buffers.

4 Discussion
Applications rendering transparent objects, from back to front, gen-
erate new color values by using Equations 1 and 2 [8].

Cout = a w u r c e x Caource + (1 - asource) x Ctarget (1)

aout = asource + (1 - asource) x atarget (2)
Where atorget and ctarget are the alpha and color values currently
in the frame buffer. asource and Csotlrce are the incoming alpha and
color values. uort and cost are the new alpha and color values to
be written to the frame buffer.

Standard hardware implementations only allow the setting of one
function which applies to both color and alpha channels. Since the
equations for color and alphaare clearly different, we cannot simply
apply color and alpha bending with Equation 1. Doing so would
cause errors in the accumulated alpha value. Equations 3 and 4
demonstrate what happens when alpha compositing is treated the
same as color compositing.

Cout = aeource x Csource + (1 - asource) x Ctarget (3)

aout = asource x asource + (1 - aaource) x atarget (4)
Notice that alphasource is squared and then added to the comple-
mented alphaJouTce times alphatarget . This contrasts with Equa-
tion 2 and the error can not be easily corrected.

The solution is to pre-multiply the color values in the texture
lookup table by their corresponding alpha values. The resulting
Equations 5 and 6 match Equations 1 and 2 respectively, since cai
expands to ci * ai.

(5) Cout = casource + (1 - asource) x Ctarget

aotrt = anoirrce + (1 - asotrrce) x atnrget (6)
This correction is only necessary when the alpha values are used
at some latter time, such as compositing. For display on a single
graphics pipe, the accumulated alpha value is not important, since
only the incoming fragment’s alpha value is used in computing the
color value, Le. the alpha value in the frame buffer is never used for
computing color.

TRex allows the use of a variable sampling rate by allowing an
arbitrary number of slices through the volume. In this situation, it
is important to properly scale the alpha values of incoming slices so
that the overall look of the volume is maintained regardless of the
sample rate. The relationship between the sample rate and scaled
alpha values is not linear. Equation 7 approximates this relation-
ship.

(7) alphaneo = 1 - (1 - alphaold) s7he.’

Where STold is the sample rate used with alphaold and srtae.w is the
new sample rate used with alphanew.

It is also important to note that this non-linear scaling of alpha
values is only critical for alpha values near or less than 0.2. The
scaling of alpha values as they approach 1 have a near linear behav-
ior. In practice the computation required to scale alpha values based
on Equation 4 is expensive. This, however, is compensated for by
the fact that the texture look up tables are relatively small in size,
256 or 4096 elements, when compared to the size of the volume
data.

The use of polygonal objects such as direct manipulation widgets
and isosurfaces in conjunction with volume data requires us to take
steps to insure that the geometry is composited with the volume
correctly. A scene with geometry and volume composited correctly
allows geometry to appear embedded in the volume. We currently
limit the type of geometric objects to those that are fully opaque.
Geometry is rendered first with depth test and depth write. Next
the volume data is rendered from back to front with depth test only.
This allows volume data to be rendered over geometric data but not
behind. One difficulty of compositing subvolumes with geometric
data is handling polygons that reside in two or more subvolumes
or only partially in a subvolume. This can be solved by clipping
geometry to planes corresponding to the faces of the subvolume
which border other subvolumes. This requires at most six clipping
planes for a subvolume which is completely surrounded by other
subvolumes.

TRex takes advantage of several platform specific optimizations.
Our benchmarks on the IR graphics subsystem revealed that un-
signed shorts were best for frame buffer reads and writes. Topology
ofthe platform is also a concern especially in NUMA platforms like
the Origin 2000. Data transfer latency can be significantly reduced
by placing processes and their memory nearest the I/O devices that
they use. This configuration avoids the overhead associated with
routing data through the system’s interconnection network. A sig-
nificant speed up was realized by placing the renderers and incom-
ing data buffers near the IR pipe which they manage for the same
reasons.

5 lmmersive TRex
Using TRex in an immersive environment adds another level of
complexity to the rendering pipeline. First, a stereo pair must be
generated for each new viewpoint. This requires twice the fill rate
as a monocular viewpoint. Achieving target frame rates requires
that we decrease the number of samples that each graphics pipe
must process per frame. One solution is to increase the number of
graphics pipes, rendering threads, and compositors. This requires
rebricking the dataset so that smaller subvolumes are rendered on

View Surface (fixed in space)

View Surfaces(move with head)

Figure 6: View Point construction for Semi-Immersive Environ-
ments (A) , and Fully-Immersive Environments (B) for an arbitrary
head orientation. Notice: View directions are parallel and perpen-
dicularly intersect the view surface. The overlap region in B is
variable on many head mounted displays

each pipe. Reducing the overall size of the dataset via subsampling
is another option if additional graphics units are not available. Sub-
sampling, however, has the side effect of blurring fine details. The
number of compositer threads in either case needs to be increased
to match the lower latency of the rendering stage.

Second, tracking devices are essential for creating an immersive
environment. Typically a separate daemon process communicates
with the tracking device and reports position and orientation to a
shared memory arena. A TRex VR session will create an addi-
tional thread for monitoring and reporting head and haddevice
data to the UI. Since multiple tracking devices are available, such as
Polhemus Fast Track(TM) and Ascension Flock of Birds(TM),
and interaction devices may vary, the VR thread is responsible for
mapping events from the current tracking and interaction devices to
a set of events which the TRex UI understands.

New viewpoints are generated using parallel viewing directions
with asymmetrical, or sheared, frustums (see Figure 6). Head ori-
entation in semi-immersive environments such as the Responsive
Workbench(TM Fakespace) is essentially disregarded. This is
because we can treat eyes as points, and assume the portal to the
virtual space (view surface) is fixed in the real space. View di-
rection for semi-immersive environments is determined by the line
from the eye point in real space which perpendicularly intersects
the view surface plane. For fully immersive environments, such as
those achieved with n- Visions Datavisor(TM) head mounted dis-
plays, eyes are still treated as points but head orientation is required
to specify the virtual portal. View direction for fully immersive en-
vironments is specified by head orientation, and eyes are assumed
to be looking forward.

View aligned slicing causes artifacts when the volume is close to
the user and rendered with perspective projection. Lamar’s spher-
ical shell slicing reduces this problem by assuring that the volume
is rendered with differential slices which are perpendicular to the
line from the center of projection to the volume element being ren-
dered. Our approach uses an adaptive tessellation of the spherical
shell. While coarse tessellations can cause artifacts, fine tessella-
tions can cause significant latency in the rendering. We allow the
user to select a tessellation which is appropriate for the visualiza-
tion.

6 TRex Widgets:
Direct manipulation widgets [2] can improve the quality and pro-
ductivity of interactive visualization. Widgets also allow the user
to have a uniform experience when using either the desktop and an
immersive environment.

Our widget sets were created using the Brown University wid-
get paradigm. The widgets are object oriented, extendible entities
which maintain state similar to a discrete finite automaton. They are
based on simple parts such as spheres, bars, and sliders. Complex
widgets are constructed from these sub-parts. Each sub-part repre-
sents some functionality of the widget. For instance, the bars which
make up the boundary of a frame widget when selected would trans-
late the whole frame, the spheres which bracket the corners would
scale the frame, sliders attached to the bars would alter some scalar
value associated with the functionality of the widget.

To facilitate parallel rendering, a typical widget is broken into
N+1 lightweight threads, where N is the number of subvolumes
in the session. A parent thread is responsible for handling events
from the UI and communicating with the child threads. The N
child threads are responsible for rendering the widget and perform-
ing subvolume specific tasks. Each child thread is associated with
a subvolume and is clipped to the half planes corresponding to the
faces of the subvolume which border other subvolumes. We have
developed three custom widgets for use with TRex.

The color map widget places the transfer function in the scene
with the volume being rendered. This provides a tighter coupling
between the actual data values and their representation as a color
value in the image. The color map widget is composed of three
bands, one for color to data value mapping, one for opacity to data
value mapping, and one for the semi-automatic generation of opac-
ity mappings [3]. This widget also includes sliders, as can be seen
in Figure 7(a), for manipulating the high quality sample rate, inter-
active sample rate, and opacity scaling.

We developed a data probe widget to allow the user to query the
visualization for local quantitative information. This widget can be
used to point to a region of the volume and automatically query the
original data for the values at that location. This widget is particu-
larly useful for studying data from physical simulations where the
actual value at a location is of interest. Figure 7(c) shows a dataset
employing the data probe widget.

The internal structure of volumetric data is often obscured by
other portions of the volume. One method for revealing hidden in-
formation is to use clipping planes to remove the regions which
occlude. For this purpose we developed a widget which allows the
user to position and orient an arbitrary clipping plane in the scene.
Because of the amorphous quality of some volume renderings, it
is necessary to map a slice to the clipping plane with a different
transfer function to make the clipped boundary apparent. One use-
ful mapping is a simple data value to gray scale and a linear alpha
ramp from low to high (see Figure 7(b)). This sort of mapping is
particularly useful for radiology datasets where users are more ac-
customed to viewing slices, rather than the whole volume.

7 Conclusions and Future work
Hardware volume rendering is a highly effective interactive visu-
alization modality. Unfortunately, it imposes limits on the size of
volumetric datasets which can be rendered with adequate update
rates. We have presented a scalable solution for the near interactive
visualization of dataset time steps which are potentially an order
of magnitude larger than the capabilities of a modern graphics card
alone. Our implementation is also flexible enough to support ad-
vanced interaction tools and serve as a platform for future volume
rendering and visualization research. The results of our research

Clip Widget

Interactive High Quality
sample rate sample rate

(a) Clip and Color Map widgets, Visualization is a MRI of a sheep heart
(5123) with cut-away showing atrium, ventricle, and valve.

are currently being integrated in a production quality application
for use by scientists at Los Alamos National Laboratory.

With the recent performance gains in the commodity graphics
card market, we are currently investigating PC clusters as a replace-
ment for the Origin 2000 system presented in this paper. While
we have successfully managed to get TRex running on a PC clus-
ter, this task presents several significant challenges. The limita-
tions present in both the internal PC architecture and interconnec-
tion networks will make it difficult to maintain our near interactive
rendering rates. There are also several areas in which our current
algorithms need to be modified so they operate efficiently in a dis-
tributed memory environment. In addition, the new functionality
available in the rasterization hardware of recent commodity graph-
ics cards offer a number of shading options at a per pixel level. We
intend to implement parallel, diffuse shaded volumes, as well as
explore alternative shading methods.

Currently, TRex only supports opaque geometry which must be
downloaded and rendered on each graphics pipe. We intend to ex-
tend TRex to render both opaque and transparent geometry embed-
ded within the volume data in a parallel, load balanced, fashion.

Finally, we are enhancing TRex’s VR capabilities with intuitive
interaction devices and new widgets. We will be exploring opti-
mizations to TRex’s pipeline, such as predictive tracking, which
take advantage of the known inter-frame latency. Direct manipula-
tion widgets have proven to be an indispensable tool for interactive
visualization and immersive environments. We are developing a
suite of widgets to perform various operations on volumetric data
such as classification, segmentation, annotation, editing, multiple
channel and vector volume visualization. In addition to their virtual
world representation, widgets can have a physical representation
associated with the interaction devices employed. To this end, we
intend to develop custom interaction devices derived from common
hand held and desktop devices specifically for this type of visual-
ization. We are also considering the addition of other visualization
modalities such as haptic feedback and auralizaion.

(h) Linear Ramp Transfer function used with Clip Widget.

8 Acknowledgments
This work was supported in part by grants from the DOE ASCI
VIEWS progmm and the DOE AVTC. The RAGE dataset was used
courtesy of Robert Weaver, LANL.

References
[I] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated Vol-

ume Rendering and Tomographic Reconstruction Using Tex-
ture Mapping Hardware. In ACM Symposium On Volume R-
sualization, 1994.

(c) Diffusion Tensor MRI of a human brain 51Z3 on 2 graphics pipes

Figure 7: TRex Widgets, (a) demonstrates the Color Map and Clip
Widgets, (c) demonstrates the Data Probe widget and shows inter-
mediate renderings to the left.

D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Hemdon,
Daniel C. Robbins, Robert C. Zelemik, and Andries van Dam.
Three-Dimensional Widgets. In Proceedings ofthe 1992 a m -
posium on Interacive 3 0 Graphics, pages 183-188, 1992.

Gordon Kindhnann and James W. Durkin. Semi-Automatic
Generation of Transfer Functions for Direct Volume Render-
ing. In ACMSymposium On Volume Visualization, pages 79-
86,1998.

Philip Lacroute and Marc Levoy. Fast Volume Rendering
Using a Shear-Warp Factorization of the Viewing Transform.
In ACM Computer Graphics (SIGGRAPH ’94 Proceedings),
pages 451458, July 1994.

' / r
[SI Eric LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolu-

tion Techniques for Interactive Texture-Based Volume Visu-
alization. In Proceedings Esualization '99, pages 355-36 1.
IEEE, October 1999.

[6] Marc Levoy. Display of surfaces from volume data. IEEE
Computer Graphics &Applications, 8(5):29-37, 1988.

[7] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler.
The VolumePro Real-Time Ray-Casting System . In ACM
Computer Graphics (SIGGRAPH '99 Pmceedings), pages

[8] Thomas Porter and Tom Duff. Compositing Digital Images.
In ACM Computer Graphics (SIGGRAPH '84 Proceedings),
pages 253-259, July 1984.

[9] Lee Alan Westover. Splatting: A Parallel, Feed-Forward Vol-
ume Rendering Algorithm. PhD thesis, University of North
Carolina at Chapel Hill, Chapel Hill, NC, 1991.

[lo] Orion Wilson, Allen Van Gelder, and Jane Wilhelms. Di-
rect Volume Rendering via 3D Textures. Technical Report
UCSC-CRL-94-19, University of California at Santa Cruz,
June 1994.

[111 P. R. Woodward. Interactive Scientific Visualization of Fluid

25 1-260, August 1999.

Flow. IEEE Computer, pages 13-25, Oct. 1993.

